Statestream: a Toolbox to Explore Layerwise- Parallel Deep Neural Networks
ثبت نشده
چکیده
Building deep neural networks to control autonomous agents which have to interact in real-time with the physical world, such as robots or automotive vehicles, requires a seamless integration of time into a network’s architecture. The central question of this work is, how the temporal nature of reality should be reflected in the execution of a deep neural network and its components. Most artificial deep neural networks are partitioned into a directed graph of connected modules or layers and the layers themselves consist of elemental building blocks, such as single units. For most deep neural networks, all units of a layer are processed synchronously and in parallel, but layers themselves are processed in a sequential manner. In contrast, all elements of a biological neural network are processed in parallel. In this paper, we define a class of networks between these two extreme cases. These networks are executed in a streaming or synchronous layerwise-parallel manner, unlocking the layers of such networks for parallel processing. Compared to the standard layerwise-sequential deep networks, these new layerwise-parallel networks show a fundamentally different temporal behavior and flow of information, especially for networks with skip or recurrent connections. We argue that layerwise-parallel deep networks are better suited for future challenges of deep neural network design, such as large functional modularized and/or recurrent architectures as well as networks allocating different network capacities dependent on current stimulus and/or task complexity. We layout basic properties and discuss major challenges for layerwise-parallel networks. Additionally, we provide a toolbox to design, train, evaluate, and online-interact with layerwiseparallel networks.
منابع مشابه
Parallelization of Deep Networks
Learning multiple levels of feature detectors in Deep Belief Networks is a promising approach both for neuro-cognitive modeling and for practical applications, but it comes at the cost of high computational requirements. Here we propose a method for the parallelization of unsupervised generative learning in deep networks based on distributing training data among multiple computational nodes in ...
متن کاملKnowledge Transfer Pre-training
Pre-training is crucial for learning deep neural networks. Most of existing pre-training methods train simple models (e.g., restricted Boltzmann machines) and then stack them layer by layer to form the deep structure. This layerwise pre-training has found strong theoretical foundation and broad empirical support. However, it is not easy to employ such method to pre-train models without a clear ...
متن کاملTraining Deep Neural Networks via Optimization Over Graphs
In this work, we propose to train a deep neural network by distributed optimization over a graph. Two nonlinear functions are considered: the rectified linear unit (ReLU) and a linear unit with both lower and upper cutoffs (DCutLU). The problem reformulation over a graph is realized by explicitly representing ReLU or DCutLU using a set of slack variables. We then apply the alternating direction...
متن کاملA New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملExploring the Imposition of Synaptic Precision Restrictions For Evolutionary Synthesis of Deep Neural Networks
A key contributing factor to incredible success of deep neural networks has been the significant rise on massively parallel computing devices allowing researchers to greatly increase the size and depth of deep neural networks, leading to significant improvements in modeling accuracy. Although deeper, larger, or complex deep neural networks have shown considerable promise, the computational comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017